%I #4 Nov 17 2013 20:23:50
%S 3,15,11,46,87,34,161,520,602,111,601,3681,6624,3985,361,2208,26587,
%T 91636,82996,26713,1172,8053,189404,1313477,2265691,1043172,178484,
%U 3809,29415,1348429,18480458,64298979,56126173,13105012,1193537,12377,107534
%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero
%C Table starts
%C ......3........15...........46.............161................601
%C .....11........87..........520............3681..............26587
%C .....34.......602.........6624...........91636............1313477
%C ....111......3985........82996.........2265691...........64298979
%C ....361.....26713......1043172........56126173.........3154769585
%C ...1172....178484.....13105012......1389867384.......154723539035
%C ...3809...1193537....164650280.....34420057373......7588839921175
%C ..12377...7979619...2068621706....852404560481....372212311236497
%C ..40218..53352090..25989674166..21109624812630..18256039956940439
%C .130687.356709629.326528021922.522775448585677.895410839428587845
%H R. H. Hardin, <a href="/A232076/b232076.txt">Table of n, a(n) for n = 1..199</a>
%F Empirical for column k:
%F k=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
%F k=2: a(n) = 5*a(n-1) +11*a(n-2) +2*a(n-3) -8*a(n-5)
%F k=3: [order 10]
%F k=4: [order 30]
%F k=5: [order 50]
%F Empirical for row n:
%F n=1: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4)
%F n=2: [order 8]
%F n=3: [order 20]
%F n=4: [order 54]
%e Some solutions for n=3 k=4
%e ..0..0..1..1..0....0..0..1..1..1....0..0..0..1..1....0..1..0..0..1
%e ..0..0..0..0..0....1..1..0..0..0....0..0..0..1..0....1..0..0..1..1
%e ..0..0..1..1..1....1..0..0..0..0....0..0..0..0..0....1..1..0..0..1
%e ..1..1..1..1..1....0..0..1..1..1....1..1..1..1..0....1..0..0..1..0
%Y Column 1 is A180762(n+1)
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 17 2013