login
A231977
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no element having a strict majority of its horizontal and vertical neighbors equal to one
8
9, 16, 16, 36, 56, 36, 81, 169, 169, 81, 169, 550, 841, 550, 169, 361, 1764, 4489, 4489, 1764, 361, 784, 5680, 24964, 43983, 24964, 5680, 784, 1681, 18225, 136900, 417316, 417316, 136900, 18225, 1681, 3600, 58596, 741321, 3844551, 6507601, 3844551
OFFSET
1,1
COMMENTS
Table starts
....9.....16........36..........81...........169..............361
...16.....56.......169.........550..........1764.............5680
...36....169.......841........4489.........24964...........136900
...81....550......4489.......43983........417316..........3844551
..169...1764.....24964......417316.......6507601........100540729
..361...5680....136900.....3844551.....100540729.......2641967397
..784..18225....741321....35366809....1557328369......69043343121
.1681..58596...4024036...328433132...24225988609....1809552010404
.3600.188356..21911761..3052452001..376708702756...47496507516441
.7744.605458.119268241.28290095075.5849616285604.1245162776547248
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6)
k=2: a(n) = 3*a(n-1) +2*a(n-3) +4*a(n-4) -10*a(n-5) -2*a(n-6) -a(n-8) +a(n-9)
k=3: [order 21]
k=4: [order 49]
EXAMPLE
Some solutions for n=2 k=4
..0..1..1..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..1..0
..0..0..0..0..0....1..0..0..0..0....0..1..0..0..0....0..0..0..0..0
..1..0..0..1..0....0..0..0..1..0....0..1..0..0..0....1..0..0..1..1
CROSSREFS
Column 1 is A207170 for n>1
Sequence in context: A092095 A186851 A201266 * A269563 A217570 A274188
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 16 2013
STATUS
approved