login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217570 Numbers n such that floor(sqrt(n)) = floor(n/(floor(sqrt(n))-1))-1. 3
9, 16, 17, 25, 26, 27, 36, 37, 38, 39, 49, 50, 51, 52, 53, 64, 65, 66, 67, 68, 69, 81, 82, 83, 84, 85, 86, 87, 100, 101, 102, 103, 104, 105, 106, 107, 121, 122, 123, 124, 125, 126, 127, 128, 129, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 169, 170, 171, 172, 173 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The sequence consists of numbers n^2+k, 0<=k<=n-3, n=3,4,5,... - M. F. Hasler, Oct 09 2012

One of four sequences given by classifying natural numbers according to the value of floor(sqrt(n)). See the paper in Link lines and A005563, A217571, A217575. - Takumi Sato, Oct 09 2012

LINKS

Table of n, a(n) for n=1..60.

Takumi Sato, Classification of Natural Numbers

EXAMPLE

As a triangle (see the first comment) this begins:

9;

16, 17;

25, 26, 27;

36, 37, 38, 39;

49, 50, 51, 52, 53;

64, 65, 66, 67, 68, 69;

81, 82, 83, 84, 85, 86, 87;

100, 101, 102, 103, 104, 105, 106, 107; etc.

[Bruno Berselli, Oct 12 2012]

PROG

(Visual Basic in Excel)

Sub A217570()

Dim x As Long, n As Long, y As Long, i As Long

x = InputBox("Count to")

For n = 2 To x

y = Int(Sqr(n))

If y = Int(n / y) Then GoTo L1

GoTo L2

L1: If y = Int(n / (y - 1)) - 1 Then

i = i + 1

Cells(i, 1) = n

End If

L2: Next n

End Sub

(PARI) is_A217570(n)={ n>3 & n\(n=sqrtint(n)-1)==n+2}  \\ - M. F. Hasler, Oct 09 2012

CROSSREFS

Cf. A005563, A217571, A217575.

Sequence in context: A201266 A231977 A269563 * A274188 A335437 A034040

Adjacent sequences:  A217567 A217568 A217569 * A217571 A217572 A217573

KEYWORD

nonn

AUTHOR

Takumi Sato, Oct 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 10:05 EST 2022. Contains 350476 sequences. (Running on oeis4.)