This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231822 Number of n X 2 0..2 arrays with no element having a strict majority of its horizontal, vertical and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions). 1
 1, 9, 64, 439, 2992, 20382, 138852, 945923, 6444056, 43899870, 299066137, 2037376372, 13879547189, 94553875250, 644144597665, 4388210021417, 29894510123024, 203655187692590, 1387393046555052, 9451561177738998 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 FORMULA Empirical: a(n) = 9*a(n-1) - 16*a(n-2) + 11*a(n-3) - 27*a(n-4) + 21*a(n-5) - 4*a(n-6). Empirical g.f.: x*(1 - x^2 - 4*x^3 - 7*x^4 - 4*x^5) / (1 - 9*x + 16*x^2 - 11*x^3 + 27*x^4 - 21*x^5 + 4*x^6). - Colin Barker, Oct 01 2018 EXAMPLE Some solutions for n=7: ..0..0....0..0....0..0....0..1....0..0....0..0....0..0....0..0....0..0....0..0 ..1..0....2..1....1..2....0..1....1..0....2..1....2..1....0..1....2..1....2..2 ..2..2....1..2....1..1....0..2....0..2....2..1....1..1....2..1....1..2....2..0 ..2..0....1..2....1..1....1..2....2..2....1..0....0..2....1..2....1..1....1..1 ..1..0....0..1....2..2....1..0....2..2....2..2....0..1....1..0....2..0....2..2 ..2..0....0..2....0..0....2..2....2..2....2..2....1..1....2..1....0..0....0..0 ..2..1....1..1....0..1....0..1....2..2....0..1....2..0....0..2....1..2....1..1 CROSSREFS Column 2 of A231828. Sequence in context: A143631 A083328 A000846 * A049684 A037540 A037484 Adjacent sequences:  A231819 A231820 A231821 * A231823 A231824 A231825 KEYWORD nonn AUTHOR R. H. Hardin, Nov 14 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 16:06 EDT 2018. Contains 316390 sequences. (Running on oeis4.)