login
A231823
Number of nX3 0..2 arrays with no element having a strict majority of its horizontal, vertical and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions)
1
3, 64, 1205, 21770, 393408, 7103846, 128269829, 2316065437, 41819317551, 755097522661, 13634184224634, 246181419676326, 4445098469972866, 80261542222378463, 1449217650304070918, 26167349141400257966
OFFSET
1,1
COMMENTS
Column 3 of A231828
LINKS
FORMULA
Empirical: a(n) = 26*a(n-1) -158*a(n-2) +239*a(n-3) +509*a(n-4) -1399*a(n-5) +1090*a(n-6) -11112*a(n-7) +15301*a(n-8) +80873*a(n-9) -119580*a(n-10) -188287*a(n-11) +130867*a(n-12) +298685*a(n-13) +639811*a(n-14) -796809*a(n-15) -1910156*a(n-16) +1602985*a(n-17) +1883568*a(n-18) -1014662*a(n-19) -1402360*a(n-20) -8047*a(n-21) +1663065*a(n-22) -635592*a(n-23) -991770*a(n-24) +711081*a(n-25) +461787*a(n-26) -343648*a(n-27) -210676*a(n-28) +150221*a(n-29) -4791*a(n-30) +4420*a(n-31) -8402*a(n-32) +6071*a(n-33) -3686*a(n-34) +632*a(n-35) +69*a(n-36) for n>37
EXAMPLE
Some solutions for n=4
..0..0..1....0..1..1....0..2..2....0..2..0....0..0..0....0..0..0....0..1..2
..2..2..1....0..1..2....0..2..2....2..1..2....1..1..2....0..0..1....0..2..0
..2..0..2....2..0..0....2..0..2....0..1..1....2..1..1....2..1..0....1..1..2
..2..1..1....2..1..1....2..1..0....0..2..1....2..0..2....2..0..0....1..2..2
CROSSREFS
Sequence in context: A099338 A289668 A119924 * A174841 A084883 A304288
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 14 2013
STATUS
approved