login
A231688
a(n) = Sum_{i=0..n} digsum(i)^3, where digsum(i) = A007953(i).
5
0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 2026, 2034, 2061, 2125, 2250, 2466, 2809, 3321, 4050, 5050, 5058, 5085, 5149, 5274, 5490, 5833, 6345, 7074, 8074, 9405, 9432, 9496, 9621, 9837, 10180, 10692, 11421, 12421, 13752, 15480, 15544, 15669, 15885, 16228, 16740, 17469, 18469, 19800, 21528, 23725, 23850, 24066, 24409, 24921, 25650, 26650, 27981, 29709, 31906, 34650
OFFSET
0,3
REFERENCES
Grabner, P. J.; Kirschenhofer, P.; Prodinger, H.; Tichy, R. F.; On the moments of the sum-of-digits function. Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
LINKS
J. Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161-176.
R. E. Kennedy and C. N. Cooper, An extension of a theorem by Cheo and Yien concerning digital sums, Fibonacci Q. 29, No. 2, 145-149 (1991).
J.-L. Mauclaire and Leo Murata, On q-additive functions, I. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
J.-L. Mauclaire and Leo Murata, On q-additive functions, II. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
H. Riede, Asymptotic estimation of a sum of digits, Fibonacci Q. 36, No. 1, 72-75 (1998).
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 1968 21-25.
MAPLE
See A037123.
MATHEMATICA
Accumulate[Table[Total[IntegerDigits[n]]^3, {n, 0, 60}]] (* Harvey P. Dale, Aug 06 2021 *)
PROG
(PARI) a(n) = sum(i=0, n, sumdigits(i)^3); \\ Michel Marcus, Jan 07 2017
CROSSREFS
Partial sums of A118880.
Sequence in context: A231682 A169835 A231686 * A000537 A114286 A098928
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved