This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231533 Decimal expansion of the negative imaginary part of Sum_{n=0..inf}(1/c_n), c_0=1, c_n=c_(n-1)*(n+I). 3
 9, 2, 8, 5, 6, 0, 7, 7, 7, 3, 2, 1, 8, 4, 5, 5, 8, 6, 6, 6, 7, 2, 0, 2, 9, 3, 2, 8, 5, 6, 6, 9, 8, 7, 2, 0, 2, 8, 9, 8, 6, 9, 7, 4, 6, 3, 3, 1, 5, 6, 5, 6, 5, 9, 9, 9, 2, 3, 1, 4, 8, 3, 3, 9, 0, 9, 9, 5, 0, 0, 6, 1, 7, 0, 2, 6, 0, 3, 6, 5, 9, 7, 6, 7, 1, 9, 0, 7, 4, 5, 8, 4, 5, 5, 1, 2, 2, 7, 1, 8, 1, 0, 0, 7, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Consider an extension of exp(x) to an intriguing function, expim(x,y), defined by the power series  Sum_{n=0..inf}(x^n/c_n), where c_0 = 1, c_n = c_(n-1)*(n+y*I), so that exp(x) = expim(x,0). The current sequence regards the negative imaginary part of the complex expim(1,1). The decimal expansion of the real part is in A231532 and that of the absolute value in A231534. LINKS Stanislav Sykora, Table of n, a(n) for n = 0..10000 FORMULA imag(Sum_{n=0..inf}(1/(A231530(n)+A231531(n)*I))). EXAMPLE -0.92856077732184558666720293... PROG (PARI) Expim(x, y)={local (c, k, lastval, val); c = 1.0+0.0*I; lastval = c; k = 1; while (k, c*=x/(k + y*I); val = lastval + c; if (val==lastval, break);   lastval = val; k += 1; ); return (val); } imag(Expim(1, 1)) CROSSREFS Cf. A231532, A231534, and A231530, A231531 (respectively the real and imaginary parts of the expansion coefficient's denominators). Sequence in context: A252001 A098784 A105172 * A011453 A125580 A086238 Adjacent sequences:  A231530 A231531 A231532 * A231534 A231535 A231536 KEYWORD nonn,cons AUTHOR Stanislav Sykora, Nov 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 12 12:43 EST 2018. Contains 317109 sequences. (Running on oeis4.)