OFFSET
0,1
COMMENTS
Consider an extension of exp(x) to an intriguing function, expim(x,y), defined by the power series Sum_{n=0..inf}(x^n/c_n), where c_0 = 1, c_n = c_(n-1)*(n+y*I), so that exp(x) = expim(x,0). The current sequence regards the negative imaginary part of the complex expim(1,1). The decimal expansion of the real part is in A231532 and that of the absolute value in A231534.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 0..10000
EXAMPLE
-0.92856077732184558666720293...
PROG
(PARI) Expim(x, y)={local (c, k, lastval, val); c = 1.0+0.0*I; lastval = c; k = 1; while (k, c*=x/(k + y*I); val = lastval + c; if (val==lastval, break); lastval = val; k += 1; ); return (val); }
imag(Expim(1, 1))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Nov 10 2013
STATUS
approved