login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231532 Decimal expansion of the real part of Sum_{n=0..inf}(1/c_n), c_0=1, c_n=c_(n-1)*(n+I). 3
1, 5, 9, 1, 5, 4, 7, 8, 1, 4, 7, 3, 2, 8, 5, 1, 9, 5, 7, 3, 3, 6, 7, 7, 9, 8, 8, 2, 0, 6, 4, 9, 9, 8, 2, 7, 6, 2, 4, 6, 0, 5, 9, 2, 6, 7, 4, 7, 8, 6, 8, 0, 0, 9, 2, 5, 4, 5, 3, 5, 3, 2, 5, 7, 0, 7, 6, 3, 8, 0, 1, 6, 3, 3, 1, 5, 2, 7, 1, 6, 6, 4, 8, 8, 3, 7, 0, 3, 2, 6, 8, 6, 9, 6, 8, 5, 9, 6, 3, 4, 5, 4, 8, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Consider an extension of exp(x) to an intriguing function, expim(x,y), defined by the power series  Sum_{n=0..inf}(x^n/c_n), where c_0 = 1, c_n = c_(n-1)*(n+y*I), so that exp(x) = expim(x,0). The current sequence regards the real part of expim(1,1). The decimal expansion of the imaginary part is in A231533 and that of the absolute value in A231534.

LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..10000

FORMULA

real(Sum_{n=0..inf}(1/(A231530(n)+A231531(n)*I))).

EXAMPLE

1.59154781473285195733677988...

PROG

(PARI) Expim(x, y)={local (c, k, lastval, val); c = 1.0+0.0*I; lastval = c; k = 1; while (k, c*=x/(k + y*I); val = lastval + c; if (val==lastval, break);   lastval = val; k += 1; ); return (val); }

real(Expim(1, 1))

CROSSREFS

Cf. A231533 (imaginary part), A231534 (absolute value), and A231530, A231531 (respectively, the real and imaginary parts of the expansion coefficient's denominators).

Sequence in context: A274418 A127414 A186192 * A086201 A010490 A021173

Adjacent sequences:  A231529 A231530 A231531 * A231533 A231534 A231535

KEYWORD

nonn,cons

AUTHOR

Stanislav Sykora, Nov 10 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 22 01:16 EDT 2017. Contains 290942 sequences.