login
A231263
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order
14
2, 3, 6, 4, 15, 22, 7, 32, 89, 86, 12, 83, 304, 547, 342, 23, 211, 1253, 2982, 3381, 1366, 44, 557, 5109, 19503, 29366, 20911, 5462, 87, 1471, 21894, 126851, 302121, 289230, 129329, 21846, 172, 3909, 94234, 866396, 3130708, 4670875, 2848550, 799835, 87382
OFFSET
1,1
COMMENTS
Table starts
......2........3..........4............7.............12...............23
......6.......15.........32...........83............211..............557
.....22.......89........304.........1253...........5109............21894
.....86......547.......2982........19503.........126851...........866396
....342.....3381......29366.......302121........3130708.........34170727
...1366....20911.....289230......4670875.......77333664.......1350570015
...5462...129329....2848550.....72212345.....1911322499......53369789699
..21846...799835...28054534...1116538567....47238533054....2108712981800
..87382..4946509..276301638..17264116873..1167469879103...83318930054700
.349526.30591143.2721223974.266940042371.28853204049176.3292096503338981
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 5*a(n-1) -4*a(n-2)
k=2: a(n) = 10*a(n-1) -29*a(n-2) +36*a(n-3) -16*a(n-4)
k=3: [order 7]
k=4: [order 12]
k=5: [order 32]
k=6: [order 67] for n>68
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
n=2: [order 9]
n=3: [order 27] for n>28
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..0..1....0..0..0..0..0....0..0..1..1..1....0..0..1..1..1
..0..0..0..1..0....0..0..0..0..0....0..1..0..0..0....0..1..1..1..1
..1..1..1..0..0....0..1..1..1..0....1..0..2..2..1....2..2..0..0..2
..1..1..1..1..1....1..1..1..0..0....0..2..2..1..1....2..0..0..2..2
CROSSREFS
Column 1 is A047849
Row 1 is A023105(n+1)
Sequence in context: A237125 A227296 A318846 * A231451 A126063 A214352
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 06 2013
STATUS
approved