login
A214352
T(n,k)=Number of nXnXn triangular 0..k arrays with no element lying outside the (possibly reversed) range delimited by its sw and se neighbors
12
2, 3, 6, 4, 17, 26, 5, 36, 169, 160, 6, 65, 660, 2853, 1386, 7, 106, 1951, 23554, 80573, 16814, 8, 161, 4822, 127813, 1602092, 3778867, 284724, 9, 232, 10507, 529006, 17790765, 205613460, 293207907, 6715224, 10, 321, 20840, 1807653, 135538054
OFFSET
1,1
COMMENTS
Table starts
....2.....3.......4........5.........6.........7..........8...........9
....6....17......36.......65.......106.......161........232.........321
...26...169.....660.....1951......4822.....10507......20840.......38421
..160..2853...23554...127813....529006...1807653....5349708....14150061
.1386.80573.1602092.17790765.135538054.790197579.3766437036.15329961031
LINKS
FORMULA
Empirical: rows n=1..5 are polynomials of degree n(n+1)/2 in k
EXAMPLE
Some solutions for n=3 k=3
....0......0......1......1......2......2......2......2......2......3......3
...0.1....3.0....1.1....0.2....2.1....1.2....3.1....0.2....2.0....3.3....3.2
..2.0.3..3.1.0..0.3.0..0.3.2..3.0.2..1.2.0..3.0.2..3.0.2..2.3.0..1.3.1..3.2.3
CROSSREFS
Column 1 is 2*A183278
Row 2 is A084990(n+1)
Sequence in context: A231263 A231451 A126063 * A248090 A229774 A137524
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 13 2012
STATUS
approved