login
A230918
Numbers n such that phi(n)^phi(n) == gcd(n, phi(n)) (mod n), where phi is the Euler totient function.
2
1, 2, 3, 5, 7, 11, 12, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 48, 51, 53, 56, 59, 61, 65, 67, 69, 71, 73, 77, 79, 80, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, 151, 157, 159
OFFSET
1,2
COMMENTS
It contains the sequence A003277 (cyclic numbers).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
Select[Range[300], PowerMod[EulerPhi[#], EulerPhi[#], #] == GCD[#,
EulerPhi[#]] &]
PROG
(PARI) is(n)=my(p=eulerphi(n), g=gcd(p, n)); Mod(p, n)^p==g \\ Charles R Greathouse IV, Dec 27 2013
CROSSREFS
Sequence in context: A137923 A163753 A131930 * A001742 A307714 A369254
KEYWORD
nonn
AUTHOR
STATUS
approved