login
A230915
T(n,k)=Number of nXk 0..7 arrays x(i,j) with each element horizontally or antidiagonally next to at least one element with value (x(i,j)+1) mod 8, and upper left element zero
7
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 8, 0, 0, 0, 0, 8, 164, 118, 0, 0, 0, 0, 32, 1650, 5714, 1506, 0, 0, 0, 0, 118, 17694, 154352, 221768, 20028, 0, 0, 0, 0, 440, 200654, 4725576, 16515468, 9144134, 271450, 0, 0, 0, 0, 1664, 2327434, 148720522
OFFSET
1,17
COMMENTS
Table starts
.0.0.0.......0...........0..............0...............0...............0
.0.0.0.......0...........2..............8..............32.............118
.0.0.0.......8.........164...........1650...........17694..........200654
.0.0.0.....118........5714.........154352.........4725576.......148720522
.0.0.0....1506......221768.......16515468......1406791226....123455818582
.0.0.0...20028.....9144134.....1821132074....433315174684.107053049550326
.0.0.0..271450...372256436...198872246508.132452949993492
.0.0.0.3678640.15083831290.21679064102116
LINKS
FORMULA
Empirical for column k:
k=4: a(n) = 18*a(n-1) -91*a(n-2) +469*a(n-3) -919*a(n-4) +2152*a(n-5) -93*a(n-6) +a(n-7)
k=5: [order 9] for n>10
Empirical for row n:
n=2: a(n) = 5*a(n-1) -4*a(n-2) -5*a(n-3) +9*a(n-4) +12*a(n-5) for n>6
n=3: [order 49] for n>52
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..7....0..1..0..7....0..1..2..1....0..1..2..3....0..1..2..3
..2..3..6..5....2..3..6..3....2..3..0..7....0..1..4..5....0..7..4..3
..4..5..4..3....4..5..4..3....4..5..6..5....0..7..6..5....6..5..2..1
CROSSREFS
Row 2 is A230509(n-1)
Sequence in context: A050809 A246516 A095217 * A242922 A242530 A073410
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 01 2013
STATUS
approved