login
A229853
384*n + 1.
5
1, 385, 769, 1153, 1537, 1921, 2305, 2689, 3073, 3457, 3841, 4225, 4609, 4993, 5377, 5761, 6145, 6529, 6913, 7297, 7681, 8065, 8449, 8833, 9217, 9601, 9985, 10369, 10753, 11137, 11521, 11905, 12289, 12673, 13057, 13441, 13825, 14209, 14593, 14977, 15361
OFFSET
0,2
COMMENTS
Every composite Fermat number has a divisor of the form 384*n + 1, n > 0.
FORMULA
G.f.: (1 + 383*x)/(1 - x)^2.
MAPLE
seq(384*n+1, n=0..40);
MATHEMATICA
Table[384*n + 1, {n, 0, 40}]
PROG
(Magma) [384*n+1 : n in [0..40]]
(PARI) for(n=0, 40, print1(384*n+1, ", "));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved