login
A229850
Number of prime factors congruent to 1 mod 3 that divide the Fermat number 2^(2^n) + 1.
4
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 3, 2
OFFSET
0,11
COMMENTS
a(n) < A046052(n) because all Fermat numbers greater than 3 are equal to 2 (mod 3).
a(n) = 1 if A046052(n) = 2.
If A046052(n) = 3, then a(n) = 0 or 2.
a(n) <= A228846(n) - n - 1 for n = 0 to 11.
REFERENCES
M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, pp. 61-63, 65-66.
LINKS
Wilfrid Keller, Fermat factoring status
Eric Weisstein's World of Mathematics, Fermat Number
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
STATUS
approved