login
A229717
T(n,k) = number of arrays of length n that are sums of k consecutive elements of length n+k-1 permutations of 0..n+k-2, and no two consecutive rises or falls in the latter permutation.
11
1, 1, 2, 1, 4, 4, 1, 8, 6, 10, 1, 18, 28, 32, 32, 1, 26, 76, 82, 86, 122, 1, 40, 256, 436, 500, 544, 544, 1, 52, 374, 1906, 1152, 2740, 2194, 2770, 1, 70, 948, 4564, 9136, 13520, 15040, 15872, 15872, 1, 86, 1024, 13232, 44372, 35724, 85480, 100630, 86642, 101042
OFFSET
1,3
LINKS
EXAMPLE
Some solutions for n=4, k=4:
11 10 8 17 12 8 11 7 7 10 10 16 9 16 14 16
13 11 9 14 10 11 14 11 9 12 9 15 8 14 13 13
12 13 12 11 8 15 15 14 13 14 10 14 10 12 11 9
13 17 17 9 10 18 14 15 18 17 14 11 12 10 12 6
Table starts
.....1.....1......1.......1........1........1........1.......1......1.....1
.....2.....4......8......18.......26.......40.......52......70.....86...108
.....4.....6.....28......76......256......374......948....1024...2264..2166
....10....32.....82.....436.....1906.....4564....13232...18336..43654.50284
....32....86....500....1152.....9136....44372...157194..326476.788998
...122...544...2740...13520....35724...392496..1924422.5979128
...544..2194..15040...85480...496576..1323380.14708704
..2770.15872.100630..676984..4639260.29525240
.15872.86642.704000.4504872.42139184
CROSSREFS
Column 1 is A001250.
Sequence in context: A138177 A101559 A220537 * A122438 A350122 A156708
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 27 2013
STATUS
approved