login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229144
Partial sums of (Fibonacci numbers mod 3).
0
0, 1, 2, 4, 4, 6, 8, 9, 9, 10, 11, 13, 13, 15, 17, 18, 18, 19, 20, 22, 22, 24, 26, 27, 27, 28, 29, 31, 31, 33, 35, 36, 36, 37, 38, 40, 40, 42, 44, 45, 45, 46, 47, 49, 49, 51, 53, 54, 54, 55, 56, 58, 58, 60, 62, 63, 63, 64, 65, 67, 67, 69, 71, 72, 72, 73, 74, 76, 76, 78, 80, 81, 81, 82, 83, 85, 85, 87, 89
OFFSET
0,3
FORMULA
G.f.: (x+x^2+2*x^3+2*x^5+2*x^6+x^7)/((1-x^8)*(1-x)). [Joerg Arndt, Sep 15 2013]
EXAMPLE
The first F(n) are 0, 1, 1, 2, 3, 5, 8,... mod 3 this becomes 0, 1, 1, 2, 0, 2, 2,... so a(n) starts 0, 1, 2, 4 ,4, 6, 8, ...
MATHEMATICA
Accumulate[Mod[Fibonacci[Range[0, 80]], 3]] (* or *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 4, 4, 6, 8, 9, 9}, 80] (* Harvey P. Dale, Aug 18 2024 *)
PROG
(JavaScript)
N=50;
f=new Array();
f[0]=0; f[1]=1;
for (i=2; i<N; i++) f[i]=f[i-1]+f[i-2];
fs=0;
for (i=0; i<N; i++) { fs+=f[i]%3; document.write(fs+', '); }
(PARI) concat([0], Vec( (x+x^2+2*x^3+2*x^5+2*x^6+x^7)/((1-x^8)*(1-x)) + O(x^166) ) ) \\ Joerg Arndt, Sep 15 2013
CROSSREFS
Sequence in context: A279667 A000061 A153176 * A263021 A112921 A339905
KEYWORD
nonn
AUTHOR
Jon Perry, Sep 15 2013
STATUS
approved