login
A229146
a(n) = n^3*(5*n+3)/2.
2
0, 4, 52, 243, 736, 1750, 3564, 6517, 11008, 17496, 26500, 38599, 54432, 74698, 100156, 131625, 169984, 216172, 271188, 336091, 412000, 500094, 601612, 717853, 850176, 1000000, 1168804, 1358127, 1569568, 1804786, 2065500, 2353489, 2670592, 3018708, 3399796
OFFSET
0,2
COMMENTS
Number of ascending runs in {1,...,n}^4.
FORMULA
G.f.: -(x^3+23*x^2+32*x+4)*x/(x-1)^5.
MAPLE
a:= n-> n^3*(5*n+3)/2:
seq(a(n), n=0..40);
MATHEMATICA
Table[n^3(5n+3)/2, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 4, 52, 243, 736}, 40] (* Harvey P. Dale, Apr 29 2022 *)
CROSSREFS
Row n=4 of A229079.
Sequence in context: A233474 A297764 A101354 * A071953 A247746 A221727
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 15 2013
STATUS
approved