login
A229122
For odd m, let f(m) be the odd part of 3*m+1. a(n) is the least positive number of f-iterations of 2*n-1 to reach an odious number (A000069), or 0 if no such number of f-iterations exists.
0
1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 3, 2, 3, 3, 2, 2, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2
OFFSET
1,2
COMMENTS
Since 1 is odious number, the conjecture that all a(n) > 0 is a very weak form of the "3x+1" (Collatz) conjecture.
We conjecture that this sequence is unbounded.
EXAMPLE
For n = 26, 2*n - 1 = 51; f(51) = 77 is evil; f(77) = 29 is evil; f(29) = 11 is odious, so a(26) = 3.
MATHEMATICA
Table[m = 2 n - 1; NestWhile[# + 1 &, 1, !OddQ[DigitCount[m = # / 2^IntegerExponent[#, 2] & [3 m + 1], 2][[1]]] &], {n, 100}] (* Peter J. C. Moses, Oct 13 2013 *)
CROSSREFS
Sequence in context: A029364 A122586 A079487 * A069010 A353332 A353362
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Oct 07 2013
EXTENSIONS
More terms from Peter J. C. Moses
STATUS
approved