login
A228892
Triangular array read by rows. T(n,k) is the number of 2-colored labeled graphs on n nodes with exactly k connected components; n>=1, 1<=k<=n.
0
2, 2, 4, 6, 12, 8, 38, 60, 48, 16, 390, 500, 360, 160, 32, 6062, 6180, 3840, 1680, 480, 64, 134526, 109228, 56280, 22400, 6720, 1344, 128, 4172198, 2673468, 1120784, 384720, 109760, 24192, 3584, 256, 178449270, 89708004, 29975400, 8579424, 2187360, 475776, 80640, 9216, 512, 10508108222, 4108881300
OFFSET
1,1
COMMENTS
A 2-colored labeled graph is a simple labeled graph in which each vertex is painted black or white and no two vertices of the same color are connected.
Row sums are A047863.
T(n,k) = A228859(n,k)*2^k.
FORMULA
E.g.f.: A(x)^y where A(x) is the e.g.f. for A047863.
EXAMPLE
2;
2, 4;
6, 12, 8;
38, 60, 48, 16;
390, 500, 360, 160, 32;
6062, 6180, 3840, 1680, 480, 64;
...
MATHEMATICA
nn=6; f[x_, y_]:=Sum[Exp[x 2^n] x^n/n!, {n, 0, nn}]; Map[Select[#, #>0&]&, Map[Table[#[[i]]->#[[i]]2^(i-1), {i, 1, Length[#]}][[All, 2]]&, Drop[Range[0, nn]!CoefficientList[Series[f[x, y]^(y/2), {x, 0, nn}], {x, y}], 1]]]//Grid
CROSSREFS
Sequence in context: A278246 A195204 A318847 * A267610 A336940 A291365
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Sep 07 2013
STATUS
approved