OFFSET
1,4
COMMENTS
The Bell transform of A001832(n+1) (without column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
FORMULA
EXAMPLE
1,
1, 1,
3, 3, 1,
19, 15, 6, 1,
195, 125, 45, 10, 1,
3031, 1545, 480, 105, 15, 1,
MATHEMATICA
nn=9; f[x_]:=Sum[Sum[Binomial[n, k]2^(k(n-k)), {k, 0, n}]x^n/n!, {n, 0, nn}]; Map[Select[#, #>0&]&, Drop[Range[0, nn]!CoefficientList[Series[Exp[y Log[f[x]]/2], {x, 0, nn}], {x, y}], 1]]//Grid
PROG
# Adds 1, 0, 0, 0, ... as column 0 to the triangle.
bell_matrix(lambda n: A001832(n+1), 8) # Peter Luschny, Jan 21 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Sep 05 2013
STATUS
approved