login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228771
The number of skew sum indecomposable permutations which avoid the patterns 3124 and 4312.
1
1, 1, 3, 12, 53, 234, 1013, 4306, 18051, 74903, 308487, 1263393, 5152139, 20941298, 84897207, 343467388, 1387244237, 5595368133, 22543241377, 90739796783, 364954106877, 1466865660103, 5892463315373, 23658818086719, 94952826295865, 380947979933041, 1527871081396065, 6126157580638517, 24557525359295337, 98421154766829972
OFFSET
1,3
LINKS
Jay Pantone, The Enumeration of Permutations Avoiding 3124 and 4312, arXiv:1309.0832 [math.CO], (2013)
FORMULA
G.f.: (8*x^6 - 28*x^5 + 50*x^4 - 35*x^3 + 10*x^2 - sqrt(-4*x + 1)*(6*x^5 - 18*x^4 + 21*x^3 - 8*x^2 + x) - x)/(8*x^5 - 46*x^4 + 71*x^3 - 43*x^2 - sqrt(-4*x + 1)*(12*x^4 - 31*x^3 + 27*x^2 - 9*x + 1) + 11*x - 1).
a(n) ~ 4^(n-1)/3 * (1+1/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: -163*(n+2)*(4*n-413) *a(n) +(-652*n^2-725425*n-452889) *a(n-1) +5*(14473*n^2+512276*n-443094) *a(n-2) +(-410045*n^2-2408964*n+8429009) *a(n-3) +2*(404156*n^2-1297075*n-1518084)*a(n-4) -8*(29333*n-32490)*(2*n-11)*a(n-5)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
Example: a(4)=12 because there are 12 skew sum indecomposable permutations of length 4 which avoid the patterns 3124 and 4312.
MATHEMATICA
CoefficientList[Series[(1/x) (8 x^6 - 28 x^5 + 50 x^4 - 35 x^3 + 10 x^2 - Sqrt[-4 x + 1] (6 x^5 - 18 x^4 + 21 x^3 - 8 x^2 + x) - x) / (8 x^5 - 46 x^4 + 71 x^3 - 43 x^2 - Sqrt[-4 x + 1] (12 x^4 - 31 x^3 + 27 x^2 - 9 x + 1) + 11 x - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 09 2013 *)
CROSSREFS
A228771(n) = A165534(n) - A228769(n)
Sequence in context: A299113 A124202 A138269 * A370023 A151198 A151199
KEYWORD
nonn
AUTHOR
Jay Pantone, Sep 08 2013
EXTENSIONS
Corrected a(17) by Vincenzo Librandi, Sep 09 2013
STATUS
approved