This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227959 Number of tilings using monominoes and L-triominoes in 2 X n chessboard, such that three monominoes cannot occur together in shape of L-triomino. 1
 1, 1, 4, 6, 20, 38, 104, 220, 556, 1244, 3024, 6944, 16576, 38536, 91216, 213280, 502864, 1178928, 2774592, 6512864, 15315072, 35969952, 84550912, 198634048, 466825152, 1096838208, 2577550336, 6056474880, 14232064256, 33441977216, 78583660288, 184655188480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Gopinath A. R., Table of n, a(n) for n = 0..200 Calvin Lin, Tiling, Discrete Mathematics Problem on Linear Recurrence Relations, Brilliant. Index entries for linear recurrences with constant coefficients, signature (0,4,2,2,4). FORMULA a(n) = 4*a(n-2) + 2*a(n-3) + 2*a(n-4) + 4*a(n-5), with a(0)=1, a(1)=1, a(2)=4, a(3)=6, and a(4)=20. G.f.: (1+x)/(1-4*x^2-2*x^3-2*x^4-4*x^5). Asymptotic formula: a(n) ~ 0.581189405182598 * 2.3498153157195^n. MATHEMATICA LinearRecurrence[{0, 4, 2, 2, 4}, {1, 1, 4, 6, 20}, 33] (* or *) CoefficientList[Series[(1 + x)/(1 - 4 x^2 - 2 x^3 - 2 x^4 - 4 x^5), {x, 0, 33}], x] (* Vincenzo Librandi, Apr 30 2018 *) PROG (Sage) fx = (1+x)/(1-4*x^2-2*x^3-2*x^4-4*x^5) fxt = taylor(fx, x, 0, 50) for i in range(51): ....print i, fxt.coefficient(x, i) (PARI) Vec( (1+x)/(1-4*x^2-2*x^3-2*x^4-4*x^5) +O(x^66) ) \\ Joerg Arndt, Aug 07 2013 (MAGMA) I:=[1, 1, 4, 6, 20]; [n le 5 select I[n] else 4*Self(n-2)+2*Self(n-3)+ 2*Self(n-4)+4*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Apr 30 2018 CROSSREFS Cf. A127864. Sequence in context: A273995 A026788 A079435 * A088015 A027377 A048789 Adjacent sequences:  A227956 A227957 A227958 * A227960 A227961 A227962 KEYWORD nonn,easy,changed AUTHOR Gopinath A. R., Aug 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 00:54 EST 2019. Contains 329885 sequences. (Running on oeis4.)