

A227510


Numbers such that product of digits of n is positive and a substring of n.


3



1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 31, 41, 51, 61, 71, 81, 91, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 126, 131, 141, 151, 153, 161, 171, 181, 191, 211, 236, 243, 311, 315, 324, 362, 411, 511, 611, 612
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

All numbers with at least one zero digit have a product of digits which is a substring; these have been kept out by the restriction on positivity.
The sequence is infinite: if n is a term 10n+1 is also a term. Are there any other patterns (except for prepending 1 to any term)?  Zak Seidov, Jul 24 2013
You can also insert 1 in any position outside the substring that gives the product of digits.  Robert Israel, Aug 26 2014
See also A203566 for a nontrivial subsequence of A203565. The zeroless members of the latter differ from this sequence from 212 on which is there but not here, while 236 is the first here but not there.  M. F. Hasler, Oct 14 2014


LINKS

Zak Seidov, Table of n, a(n) for n = 1..10000


EXAMPLE

The product of the digits of 236 is 36, a substring of 236, and hence 236 is a member.


MAPLE

filter:= proc(n)
local L;
L:= convert(n, base, 10);
if has(L, 0) then return false fi;
verify(convert(convert(L, `*`), base, 10), L, 'sublist');
end proc:
select(filter, [$1..1000]); # Robert Israel, Aug 26 2014


MATHEMATICA

Select[Range[650], FreeQ[x = IntegerDigits[#], 0] && MemberQ[FromDigits /@ Partition[x, IntegerLength[y = Times @@ x], 1], y] &]


PROG

(Python)
from operator import mul
from functools import reduce
A227510 = [int(n) for n in (str(x) for x in range(1, 10**5)) if
..........not n.count('0') and str(reduce(mul, (int(d) for d in n))) in n]
# Chai Wah Wu, Aug 26 2014
(PARI) {isok(n)=d=digits(n); p=prod(i=1, #d, d[i]); k=1; while(p&&k<=(#d#digits(p)+1), v=[]; for(j=k, k+#digits(p)1, v=concat(v, d[j])); if(v==digits(p), return(1)); k++); return(0); }
n=1; while(n<10^4, if(isok(n), print1(n, ", ")); n++) \\ Derek Orr, Aug 26 2014
(PARI) is_A227510(n)={(t=digits(prod(i=1, #n=digits(n), n[i])))&&for(i=0, #n#t, vecextract(n, 2^(i+#t)2^i)==t&&return(1))} \\ M. F. Hasler, Oct 14 2014


CROSSREFS

Cf. A052018, A203565, A203566, A203569, A198298, A236402, A236403, A236404.
Sequence in context: A277061 A090274 A254621 * A032898 A131058 A032857
Adjacent sequences: A227507 A227508 A227509 * A227511 A227512 A227513


KEYWORD

nonn,base


AUTHOR

Jayanta Basu, Jul 14 2013


EXTENSIONS

Edited by M. F. Hasler, Oct 14 2014


STATUS

approved



