login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227510 Numbers such that product of digits of n is positive and a substring of n. 3
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 31, 41, 51, 61, 71, 81, 91, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 126, 131, 141, 151, 153, 161, 171, 181, 191, 211, 236, 243, 311, 315, 324, 362, 411, 511, 611, 612 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

All numbers with at least one zero digit have a product of digits which is a substring; these have been kept out by the restriction on positivity.

The sequence is infinite: if n is a term 10n+1 is also a term. Are there any other patterns (except for prepending 1 to any term)? - Zak Seidov, Jul 24 2013

You can also insert 1 in any position outside the substring that gives the product of digits. - Robert Israel, Aug 26 2014

See also A203566 for a nontrivial subsequence of A203565. The zeroless members of the latter differ from this sequence from 212 on which is there but not here, while 236 is the first here but not there. - M. F. Hasler, Oct 14 2014

LINKS

Zak Seidov, Table of n, a(n) for n = 1..10000

EXAMPLE

The product of the digits of 236 is 36, a substring of 236, and hence 236 is a member.

MAPLE

filter:= proc(n)

  local L;

  L:= convert(n, base, 10);

  if has(L, 0) then return false fi;

  verify(convert(convert(L, `*`), base, 10), L, 'sublist');

end proc:

select(filter, [$1..1000]); # Robert Israel, Aug 26 2014

MATHEMATICA

Select[Range[650], FreeQ[x = IntegerDigits[#], 0] && MemberQ[FromDigits /@ Partition[x, IntegerLength[y = Times @@ x], 1], y] &]

PROG

(Python)

from operator import mul

from functools import reduce

A227510 = [int(n) for n in (str(x) for x in range(1, 10**5)) if

..........not n.count('0') and str(reduce(mul, (int(d) for d in n))) in n]

# Chai Wah Wu, Aug 26 2014

(PARI) {isok(n)=d=digits(n); p=prod(i=1, #d, d[i]); k=1; while(p&&k<=(#d-#digits(p)+1), v=[]; for(j=k, k+#digits(p)-1, v=concat(v, d[j])); if(v==digits(p), return(1)); k++); return(0); }

n=1; while(n<10^4, if(isok(n), print1(n, ", ")); n++) \\ Derek Orr, Aug 26 2014

(PARI) is_A227510(n)={(t=digits(prod(i=1, #n=digits(n), n[i])))&&for(i=0, #n-#t, vecextract(n, 2^(i+#t)-2^i)==t&&return(1))} \\ M. F. Hasler, Oct 14 2014

CROSSREFS

Cf. A052018, A203565, A203566, A203569, A198298, A236402, A236403, A236404.

Sequence in context: A277061 A090274 A254621 * A032898 A131058 A032857

Adjacent sequences:  A227507 A227508 A227509 * A227511 A227512 A227513

KEYWORD

nonn,base

AUTHOR

Jayanta Basu, Jul 14 2013

EXTENSIONS

Edited by M. F. Hasler, Oct 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 22:22 EDT 2019. Contains 322310 sequences. (Running on oeis4.)