login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226995 Number of lattice paths from (0,0) to (n,n) consisting of steps U=(1,1), H=(1,0) and S=(0,1) such that the first step leaving the diagonal (if any) is an H step and the last step joining the diagonal (if any) is a S step. 3
1, 2, 6, 23, 103, 504, 2588, 13661, 73373, 398814, 2186818, 12072275, 67004451, 373532596, 2089994360, 11730304377, 66012996217, 372350924666, 2104523577534, 11916013288271, 67576932913951, 383781666337072, 2182362613988116, 12424357722805333 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: x/((x-1)^2*sqrt(x^2-6*x+1)) - 1/(x-1).

a(n) ~ (3+2*sqrt(2))^(n+1/2)/(2^(3+1/4)*sqrt(Pi*n))). - Vaclav Kotesovec, Jun 27 2013

EXAMPLE

a(0) = 1: the empty path.

a(1) = 2: HS, U.

a(2) = 6: HHSS, HSHS, HSU, HUS, UHS, UU.

a(3) = 23: HHHSSS, HHSHSS, HHSSHS, HHSSU, HHSUS, HHUSS, HSHHSS, HSHSHS, HSHSU, HSHUS, HSSHHS, HSUHS, HSUU, HUHSS, HUSHS, HUSU, HUUS, UHHSS, UHSHS, UHSU, UHUS, UUHS, UUU.

MAPLE

a:= proc(n) option remember; `if`(n<4, [1, 2, 6, 23][n+1],

     ((8*n-11)*a(n-1) +(21-14*n)*a(n-2)

      +(8*n-13)*a(n-3) -(n-2)*a(n-4))/ (n-1))

    end:

seq(a(n), n=0..25);

MATHEMATICA

CoefficientList[Series[x/((x-1)^2*Sqrt[x^2-6*x+1]) - 1/(x-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 27 2013 *)

CROSSREFS

Cf. A001850 (unrestricted paths), A006318 (subdiagonal paths), A226994, A226996.

Sequence in context: A279573 A174193 A238639 * A301897 A022558 A004040

Adjacent sequences:  A226992 A226993 A226994 * A226996 A226997 A226998

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Jun 26 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 14:29 EDT 2020. Contains 333314 sequences. (Running on oeis4.)