login
A226362
Decimal representation of continued fraction antisigma(1), antisigma(2), antisigma(3), antisigma(4), ...
1
2, 3, 2, 1, 5, 6, 7, 8, 6, 4, 5, 1, 8, 4, 1, 4, 0, 5, 1, 6, 0, 3, 2, 6, 4, 1, 1, 3, 6, 1, 7, 6, 3, 2, 6, 4, 2, 6, 5, 8, 6, 0, 0, 2, 9, 3, 7, 9, 6, 1, 1, 7, 7, 5, 6, 7, 0, 1, 1, 6, 8, 3, 6, 1, 3, 3, 6, 5, 5, 9, 2, 5, 5, 3, 7, 7, 0, 1, 0, 4, 6, 1, 9, 1, 2, 9, 2, 1, 1, 2, 9, 2, 9, 9, 5, 8, 4, 2, 0, 6, 5, 6, 8, 5, 0
OFFSET
1,1
COMMENTS
2.321567864518414051603264113617... = [0, 0, 2, 3, 9, 9, 20, 21, 32, 37, 54, 50, 77, 81, 96, ...]
LINKS
MAPLE
with(numtheory);
A226362:=proc(q) local a, n; a:=(q+1)*(q+2)/2-sigma(q+1);
for n from q by -1 to 1 do a:=1/a+n*(n+1)/2-sigma(n); od;
print(evalf(a, 100)); end: A226362(10^5);
MATHEMATICA
digits=100; RealDigits[FromContinuedFraction[Table[n(n + 1)/2 - DivisorSigma[1, n], {n, digits}]], 10, digits][[1]] (* Stefano Spezia, Aug 02 2024 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Paolo P. Lava, Jun 05 2013
STATUS
approved