login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226131 Numerators of rational numbers as generated by the rules: 1 is in S, and if nonzero x is in S, then x+1 and -1/x are in S.  (See Comments). 8
1, 2, -1, 3, -1, 0, 4, -1, 1, 5, -1, 2, 3, -2, 6, -1, 3, 5, -3, 5, -2, 7, -1, 4, 7, -4, 8, -3, 7, -2, 1, 8, -1, 5, 9, -5, 11, -4, 11, -3, 2, 9, -2, 3, 4, -3, 9, -1, 6, 11, -6, 14, -5, 15, -4, 3, 14, -3, 5, 7, -5, 11, -2, 5, 8, -5, 7, -3, 10, -1, 7, 13, -7 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Let S be the set of numbers defined by these rules:  1 is in S, and if nonzero x is in S, then x + 1 and -1/x are in S.  Then S is the set of all rational numbers, produced in generations as follows: g(1) = (1), g(2) = (2, -1), g(3) = (3, -1/2, 0), g(4) = (4,-1/3,1/2),... For n > 4, once g(n-1) = (c(1),...,c(z)) is defined, g(n) is formed from the vector (c(1)+1, -1/c(1), c(2)+1, -1/c(2),...,c(z)+1, -1/c(z)) by deleting previously generated elements.  Let S' denote the sequence formed by concatenating the generations.

A226130:  Denominators of terms of S'

A226131:  Numerators of terms of S'

A226136:  Positions of positive integers in S'

A226137:  Positions of integers in S'

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

Index entries for fraction trees

EXAMPLE

The denominators and numerators are read from the rationals in S':

1/1, 2/1, -1/1, 3/1, -1/2, 0/1, 4/1, -1/3, 1/2, ...

MATHEMATICA

g[1] := {1}; z = 20; g[n_] := g[n] = DeleteCases[Flatten[Transpose[{# + 1, -1/#}]]&[DeleteCases[g[n - 1], 0]], Apply[Alternatives, Flatten[Map[g, Range[n - 1]]]]]; Flatten[Map[g, Range[7]]]  (* ordered rationals *)

Map[g, Range[z]]; Table[Length[g[i]], {i, 1, z}] (* cf A003410 *)

f = Flatten[Map[g, Range[z]]];

Take[Denominator[f], 100] (* A226130 *)

Take[Numerator[f], 100]    (* A226131 *)

p1 = Flatten[Table[Position[f, n], {n, 1, z}]] (* A226136 *)

p2 = Flatten[Table[Position[f, -n], {n, 0, z}]];

Union[p1, p2]  (* A226137 *) (* Peter J. C. Moses, May 26 2013 *)

CROSSREFS

Cf. A226080 (rabbit ordering of positive rationals).

Sequence in context: A186976 A160550 A172038 * A199056 A144966 A320000

Adjacent sequences:  A226128 A226129 A226130 * A226132 A226133 A226134

KEYWORD

sign,frac

AUTHOR

Clark Kimberling, May 28 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 02:40 EST 2019. Contains 319365 sequences. (Running on oeis4.)