login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225121
Number of standard Young tableaux with shapes corresponding to partitions into distinct parts with minimal difference 2.
2
1, 1, 1, 1, 4, 5, 15, 21, 56, 246, 525, 1573, 5764, 14092, 41405, 136995, 772552, 2148290, 8806629, 31679365, 155743665, 495240074, 2049655762, 7403470138, 32627363920, 207316068370, 784695179515, 3721285661481, 16967347935561, 82192321793926, 455572563875425
OFFSET
0,5
LINKS
Wikipedia, Young tableau
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=ceil(i*(i+2)/4);
`if`(n=s, h([l[], seq(i-2*j, j=0..iquo(i-1, 2))]), `if`(n>s, 0,
g(n, i-1, l)+`if`(i>n, 0, g(n-i, i-2, [l[], i]))))
end:
a:= n-> g(n, n, []):
seq(a(n), n=0..35); # Alois P. Heinz, Apr 29 2013
MATHEMATICA
h[l_List] := Module[{n}, n = Length[l]; Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := Module[{s}, s = Ceiling[i*(i+2)/4]; If[n==s, h[Join[l, Table[i-2*j, {j, 0, Quotient[i-1, 2]}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-2, Append[l, i]]]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 02 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A218293 (tableaux with shapes corresponding to partitions into distinct parts).
Cf. A000085 (standard Young tableaux for all shapes).
Sequence in context: A100234 A007390 A037955 * A267991 A225536 A084179
KEYWORD
nonn
AUTHOR
Joerg Arndt, Apr 29 2013
STATUS
approved