login
A224510
Number of simple labeled graphs on {1,2,...,n} such that the node labeled with 1 is in the same component as the node labeled with 2.
2
0, 0, 1, 5, 48, 874, 30264, 2019680, 263757552, 68148453616, 35042313517056, 35957170070748800, 73714223732206510848, 302083108644327384484864, 2475273899774743284992553984, 40559859846438312840086623738880, 1329146799084147159829387611140308992
OFFSET
0,4
COMMENTS
A001187(n) < a(n) < A006125(n) for n>2.
LINKS
FORMULA
a(n) = Sum_{k=0..n-2} C(n-2,k)*A001187(k+2)*A006125(n-k-2). - Alois P. Heinz, Apr 09 2013
E.g.f.: Double integral of A''(x)*B(x) dx^2 where A(x) is e.g.f. for A001187 and B(x) is e.g.f. for A006125. - Geoffrey Critzer, Apr 09 2013
MAPLE
b:= proc(n) b(n):= `if`(n=0, 1, 2^binomial(n, 2)-
add(binomial(n, k)*k*b(k)*2^binomial(n-k, 2), k=0..n-1)/n)
end:
a:= n-> add(binomial(n-2, k)*b(k+2)*2^binomial(n-k-2, 2), k=0..n-2):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 09 2013
MATHEMATICA
(* by brute force counting *) nn=10; g=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, nn}]; a=Drop[Range[0, nn]!CoefficientList[Series[Log[g]+1, {x, 0, nn}], x], 1]; f[list_]:=Product[a[[i]], {i, list}]; Table[Total[Map[f, Map[Length, Select[SetPartitions[n], MemberQ[#[[1]], 2]&], {2}]]], {n, 2, nn}]
(* or *)
nn=30; g=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, nn+2}]; Range[0, nn]!CoefficientList[Series[D[D[Log[g]+1, x], x] g, {x, 0, nn}], x]
CROSSREFS
Sequence in context: A370758 A352254 A346183 * A333982 A063429 A297856
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Apr 08 2013
EXTENSIONS
More terms from Alois P. Heinz, Apr 09 2013
STATUS
approved