|
|
A224511
|
|
Roots of squares generated in A221643. That is, S = i^2 XOR (i+1)^2; increment i; if S is a square then square root of S is appended to a(n). Initially i=0. XOR is the binary logical exclusive-or operator.
|
|
1
|
|
|
1, 5, 3, 9, 7, 13, 11, 21, 17, 15, 43, 45, 29, 19, 41, 25, 23, 59, 39, 27, 35, 33, 31, 85, 37, 61, 51, 53, 47, 81, 79, 49, 55, 121, 83, 75, 57, 73, 77, 67, 65, 63, 71, 69, 125, 89, 87, 123, 105, 107, 95, 101, 163, 93, 91, 99, 97, 349, 243, 103, 169, 109, 233, 115, 119, 171
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Conjecture: this is a permutation of odd numbers.
b(n) = (a(n)-1)/2 begins: 0, 2, 1, 4, 3, 6, 5, 10, 8, 7, 21, 22, 14, 9, 20, 12, 11, 29, 19, 13, 17.
|
|
LINKS
|
Table of n, a(n) for n=1..66.
|
|
PROG
|
(Python)
import math
for i in range(1<<16):
s = (i*i) ^ ((i+1)*(i+1))
r = int(math.sqrt(s));
if s == r*r:
print str(r)+', ',
|
|
CROSSREFS
|
Cf. A221643, A224515.
Sequence in context: A073891 A196396 A086970 * A201938 A201410 A019955
Adjacent sequences: A224508 A224509 A224510 * A224512 A224513 A224514
|
|
KEYWORD
|
nonn,base,less,changed
|
|
AUTHOR
|
Alex Ratushnyak, Apr 08 2013
|
|
STATUS
|
approved
|
|
|
|