OFFSET
0,2
COMMENTS
The poly-Cauchy numbers of the second kind hat c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
MATHEMATICA
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^5, {k, 0, n}], {n, 0, 30}]
PROG
(Magma) [&+[StirlingFirst(n, k)*(-1)^k*(k+1)^5: k in [0..n]]: n in [0..23]]; // Vincenzo Librandi, Aug 03 2013
(PARI) a(n) = sum(k=0, n, (-1)^k*stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015
CROSSREFS
KEYWORD
sign
AUTHOR
Takao Komatsu, Mar 29 2013
STATUS
approved