login
A223350
3X3X3 triangular graph without horizontal edges coloring a rectangular array: number of nX6 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph
1
300, 22388, 1851020, 154482340, 12912752876, 1079538816324, 90254934876620, 7545802995190884, 630870570544801836, 52744249735952687492, 4409709467224003774348, 368675973859970441084836
OFFSET
1,1
COMMENTS
Column 6 of A223352
LINKS
FORMULA
Empirical: a(n) = 105*a(n-1) -1690*a(n-2) -12608*a(n-3) +372616*a(n-4) -412320*a(n-5) -25492864*a(n-6) +95198976*a(n-7) +669344256*a(n-8) -3814535168*a(n-9) -4806082560*a(n-10) +56384290816*a(n-11) -49291067392*a(n-12) -244915896320*a(n-13) +525445627904*a(n-14) -268301238272*a(n-15) -40399536128*a(n-16) +53687091200*a(n-17) -8589934592*a(n-18)
EXAMPLE
Some solutions for n=3
..3..1..0..2..4..2....0..1..0..2..4..1....0..1..0..2..0..1....3..1..0..1..4..1
..1..0..1..4..2..4....2..0..1..0..2..0....1..4..1..4..1..4....1..4..1..3..1..3
..3..1..3..1..0..2....0..2..4..2..5..2....0..1..4..2..4..1....0..1..0..1..3..1
CROSSREFS
Sequence in context: A092715 A241943 A036517 * A190880 A063935 A294687
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 19 2013
STATUS
approved