OFFSET
3,1
COMMENTS
n >= 3, because if n = 2 then k = p^a * q^b, where p and q are distinct primes and (p+q)^2 | k => p+q == 0 (mod p) or 0 (mod q), but p==0 (mod q) and q==0 (mod p) are impossible.
LINKS
Charles R Greathouse IV, GP script for computing terms
EXAMPLE
a(4) = 37026 because the prime distinct divisors of this number are {2, 3, 11, 17}, (2 + 3 + 11 + 17)^2 = 1089, and 37026 = 1089*34.
MAPLE
with(numtheory):for n from 3 to 10 do:id:=0:for k from 1 to 5000000 while(id=0)
do:x:=factorset(k):n1:=nops(x):s:=0:for p from 1 to n1 do: s:=s+x[p]:od:s:=s^2:if
n1= n and irem(k, s)=0 then id:=1:printf ( "%d %d \n", n, k):else fi:od:od:
PROG
(PARI) \\ See links for script.
CROSSREFS
KEYWORD
nonn,hard,more,changed
AUTHOR
Michel Lagneau, May 23 2011
EXTENSIONS
a(8)-a(13) from Charles R Greathouse IV, May 23 2011
a(14)-a(15) from Charles R Greathouse IV, May 24 2011
STATUS
approved