login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222704
Total number of parts of multiplicity 4 in all partitions of n.
2
1, 0, 1, 1, 3, 3, 5, 6, 11, 13, 20, 24, 37, 45, 64, 80, 110, 137, 184, 229, 303, 375, 486, 602, 772, 951, 1202, 1478, 1853, 2267, 2817, 3432, 4236, 5142, 6300, 7620, 9284, 11185, 13553, 16273, 19625, 23478, 28187, 33613, 40192, 47778, 56904, 67443, 80051
OFFSET
4,5
LINKS
FORMULA
G.f.: (x^4/(1-x^4)-x^5/(1-x^5))/Product_{j>0}(1-x^j).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (40*Pi*sqrt(2*n)). - Vaclav Kotesovec, May 24 2018
MAPLE
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=4, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=4..60);
MATHEMATICA
b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p<1, {0, 0}, Sum[Function[l, If[m == 4, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]];
a[n_] := b[n, n][[2]];
Table[a[n], {n, 4, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A197126.
Sequence in context: A276434 A183561 A300183 * A095950 A089874 A092035
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 28 2013
STATUS
approved