login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A197126 Triangle T(n,k), n>=1, 1<=k<=n, read by rows: T(n,k) is the number of cliques of size k in all partitions of n. 13
1, 1, 1, 3, 0, 1, 4, 2, 0, 1, 8, 2, 1, 0, 1, 11, 4, 2, 1, 0, 1, 19, 5, 3, 1, 1, 0, 1, 26, 10, 3, 3, 1, 1, 0, 1, 41, 11, 7, 3, 2, 1, 1, 0, 1, 56, 20, 8, 5, 3, 2, 1, 1, 0, 1, 83, 25, 13, 6, 5, 2, 2, 1, 1, 0, 1, 112, 38, 17, 11, 5, 5, 2, 2, 1, 1, 0, 1, 160, 49, 25, 13, 9, 5, 4, 2, 2, 1, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique.

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

Abdulaziz M. Alanazi, Augustine O. Munagi, On partition configurations of Andrews-Deutsch, Integers 17 (2017), #A7.

FORMULA

G.f. of column k: (x^k/(1-x^k)-x^(k+1)/(1-x^(k+1)))/Product_{j>0}(1-x^j).

Column k is asymptotic to exp(Pi*sqrt(2*n/3)) / (k*(k+1)*Pi*2^(3/2)*sqrt(n)). - Vaclav Kotesovec, May 24 2018

EXAMPLE

T(4,1) = 4: [1,1,(2)], [(1),(3)], [(4)].

T(8,3) = 3: [1,1,(2,2,2)], [(1,1,1),2,3], [(1,1,1),5].

T(12,4) = 11: [(1,1,1,1),(2,2,2,2)], [1,(2,2,2,2),3], [(1,1,1,1),2,3,3], [(3,3,3,3)], [(1,1,1,1),2,2,4], [(2,2,2,2),4], [(1,1,1,1),4,4], [(1,1,1,1),3,5], [(1,1,1,1),2,6], [(1,1,1,1),8].  Here the first partition contains 2 cliques.

Triangle begins:

   1;

   1,  1;

   3,  0, 1;

   4,  2, 0, 1;

   8,  2, 1, 0, 1;

  11,  4, 2, 1, 0, 1;

  19,  5, 3, 1, 1, 0, 1;

  26, 10, 3, 3, 1, 1, 0, 1;

MAPLE

b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],

      add((l->`if`(m=k, l+[0, l[1]], l))(b(n-p*m, p-1, k)), m=0..n/p)))

    end:

T:= (n, k)-> b(n, n, k)[2]:

seq(seq(T(n, k), k=1..n), n=1..20);

MATHEMATICA

Table[CoefficientList[ 1/q* Tr[Flatten[q^Map[Length, Split /@ IntegerPartitions[n], {2}]]], q], {n, 24}] (* Wouter Meeussen, Apr 21 2012 *)

b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[ Function[l, If[m == k, l + {0, l[[1]]}, l]][b[n - p*m, p - 1, k]], {m, 0, n/p}]]]; T[n_, k_] := b[n, n, k][[2]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-Fran├žois Alcover, Aug 29 2016, after Alois P. Heinz *)

CROSSREFS

Columns k=1-10 give: A024786(n+1), A116646, A117524, A222704, A222705, A222706, A222707, A222708, A222709, A222710.

Row sums give: A000070(n-1). Diagonal gives: A000012.  Limit of reversed rows: T(2*n+1,n+1) = A002865(n).

Cf. A213180.

Sequence in context: A245120 A226912 A177330 * A256987 A048963 A119458

Adjacent sequences:  A197123 A197124 A197125 * A197127 A197128 A197129

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Oct 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 19:19 EST 2020. Contains 331211 sequences. (Running on oeis4.)