login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A197126 Triangle T(n,k), n>=1, 1<=k<=n, read by rows: T(n,k) is the number of cliques of size k in all partitions of n. 11
1, 1, 1, 3, 0, 1, 4, 2, 0, 1, 8, 2, 1, 0, 1, 11, 4, 2, 1, 0, 1, 19, 5, 3, 1, 1, 0, 1, 26, 10, 3, 3, 1, 1, 0, 1, 41, 11, 7, 3, 2, 1, 1, 0, 1, 56, 20, 8, 5, 3, 2, 1, 1, 0, 1, 83, 25, 13, 6, 5, 2, 2, 1, 1, 0, 1, 112, 38, 17, 11, 5, 5, 2, 2, 1, 1, 0, 1, 160, 49, 25, 13, 9, 5, 4, 2, 2, 1, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique.

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

FORMULA

G.f. of column k: (x^k/(1-x^k)-x^(k+1)/(1-x^(k+1)))/Product_{j>0}(1-x^j).

EXAMPLE

T(4,1) = 4: [1,1,(2)], [(1),(3)], [(4)].

T(8,3) = 3: [1,1,(2,2,2)], [(1,1,1),2,3], [(1,1,1),5].

T(12,4) = 11: [(1,1,1,1),(2,2,2,2)], [1,(2,2,2,2),3], [(1,1,1,1),2,3,3], [(3,3,3,3)], [(1,1,1,1),2,2,4], [(2,2,2,2),4], [(1,1,1,1),4,4], [(1,1,1,1),3,5], [(1,1,1,1),2,6], [(1,1,1,1),8].  Here the first partition contains 2 cliques.

Triangle begins:

1;

1,   1;

3,   0, 1;

4,   2, 0, 1;

8,   2, 1, 0, 1;

11,  4, 2, 1, 0, 1;

19,  5, 3, 1, 1, 0, 1;

26, 10, 3, 3, 1, 1, 0, 1;

MAPLE

b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],

      add((l->`if`(m=k, l+[0, l[1]], l))(b(n-p*m, p-1, k)), m=0..n/p)))

    end:

T:= (n, k)-> b(n, n, k)[2]:

seq(seq(T(n, k), k=1..n), n=1..20);

MATHEMATICA

Table[CoefficientList[ 1/q* Tr[Flatten[q^Map[Length, Split /@ IntegerPartitions[n], {2}]]], q], {n, 24}] (* Wouter Meeussen, Apr 21 2012 *)

b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[ Function[l, If[m == k, l + {0, l[[1]]}, l]][b[n - p*m, p - 1, k]], {m, 0, n/p}]]]; T[n_, k_] := b[n, n, k][[2]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-Fran├žois Alcover, Aug 29 2016, after Alois P. Heinz *)

CROSSREFS

Columns k=1-10 give: A024786(n+1), A116646, A117524, A222704, A222705, A222706, A222707, A222708, A222709, A222710.

Row sums give: A000070(n-1). Diagonal gives: A000012.  Limit of reversed rows: T(2*n+1,n+1) = A002865(n).

Cf. A213180.

Sequence in context: A245120 A226912 A177330 * A256987 A048963 A119458

Adjacent sequences:  A197123 A197124 A197125 * A197127 A197128 A197129

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Oct 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 19:13 EST 2016. Contains 278683 sequences.