login
A220220
Primes p of the form p = A161671(k) = A161671(k+1).
3
2, 7, 43, 311, 491, 827, 1367, 1693, 1733, 1741, 2089, 2239, 2927, 3343, 5231, 5743, 9319, 9521, 11177, 12611, 13249, 15511, 16661, 17989, 24083, 24611, 25679, 25841, 28723, 37861, 39199, 46663, 47279, 51659, 53281, 58031, 58309, 58549, 59723, 64091, 68041, 70051, 70913, 71261
OFFSET
1,1
COMMENTS
There are also composites m = A161671(k) = A161671(k+1). An example is 65 = A161671(26) = A161671(27). - Michael De Vlieger, Mar 22 2022
LINKS
Michael De Vlieger, Scatterplot of A161671(n), n = 1..120, showing and labeling primes p in this sequence in red.
Michael De Vlieger, Scatterplot of A161671(n), n = 1..2^12, showing primes p in this sequence in red.
EXAMPLE
The prime 2 is in the sequence because 2 = A161671(1) = A161671(2).
MATHEMATICA
f[n_] := FixedPoint[n + PrimePi@ # &, n + PrimePi@ n]; Reap[Do[(If[PrimeQ[#] && # == j, Sow[#]]; j = #) &[Prime[i] - f[i - 1] ], {i, 8500}] ][[-1, -1]] (* Michael De Vlieger, Mar 22 2022, after Robert G. Wilson v at A141468 *)
CROSSREFS
KEYWORD
nonn,less
AUTHOR
STATUS
approved