login
A235714
Consider N = numerator( 1/p! + 1/q! ) where p = prime(n), q = prime(n+1) for n = 1,2,3,.... Append N to sequence if it is a prime.
1
2, 7, 43, 157, 7, 72775847, 139, 523, 751, 193, 19183, 22651, 140165120353, 1051, 37057, 433, 7459, 8263, 19248899859613286187907, 1564207235629, 10453, 877, 1993, 45183625504351, 121453, 89248200525047, 1505879629
OFFSET
1,1
LINKS
EXAMPLE
43 is in the sequence because ( 1/5! + 1/7! ) = (1/120 + 1/5040) = 43/5040: numerator(43/5040) = 43 which is prime.
MAPLE
KD := proc() local a, b, d, e; a:=ithprime(n)!; b:= ithprime(n+1)!; d:=(1/a) + (1/b); e:=numer(d); if isprime(e) then RETURN (e); fi; end: seq(KD(), n=1..100);
MATHEMATICA
k={}; Do[p=Prime[n]; q=Prime[n+1]; p2=Numerator[1/p!+1/q!]; If[PrimeQ[p2], AppendTo[k, p2]], {n, 150}]; k
CROSSREFS
Sequence in context: A065298 A091877 A050631 * A146759 A303031 A220220
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jan 15 2014
STATUS
approved