This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219987 Number A(n,k) of tilings of a k X n rectangle using dominoes and right trominoes; square array A(n,k), n>=0, k>=0, read by antidiagonals. 11
 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 5, 5, 1, 1, 1, 0, 11, 8, 11, 0, 1, 1, 1, 24, 55, 55, 24, 1, 1, 1, 0, 53, 140, 380, 140, 53, 0, 1, 1, 1, 117, 633, 2319, 2319, 633, 117, 1, 1, 1, 0, 258, 1984, 15171, 21272, 15171, 1984, 258, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 LINKS Alois P. Heinz, Antidiagonals n = 0..31, flattened Wikipedia, Domino Wikipedia, Tromino EXAMPLE A(3,3) = 8, because there are 8 tilings of a 3 X 3 rectangle using dominoes and right trominoes:   .___._.   .___._.   .___._.   .___._.   |___| |   |___| |   |___| |   |_. | |   | ._|_|   | | |_|   | |___|   | |_|_|   |_|___|   |_|___|   |_|___|   |_|___|   ._.___.   ._.___.   ._.___.   ._.___.   | |___|   | | ._|   | |___|   | |___|   |___| |   |_|_| |   |_|_. |   |_| | |   |___|_|   |___|_|   |___|_|   |___|_| Square array A(n,k) begins:   1,  1,   1,    1,     1,       1,         1,          1, ...   1,  0,   1,    0,     1,       0,         1,          0, ...   1,  1,   2,    5,    11,      24,        53,        117, ...   1,  0,   5,    8,    55,     140,       633,       1984, ...   1,  1,  11,   55,   380,    2319,     15171,      96139, ...   1,  0,  24,  140,  2319,   21272,    262191,    2746048, ...   1,  1,  53,  633, 15171,  262191,   5350806,  100578811, ...   1,  0, 117, 1984, 96139, 2746048, 100578811, 3238675344, ... MAPLE b:= proc(n, l) option remember; local k, t;       if max(l[])>n then 0 elif n=0 or l=[] then 1     elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))     else for k do if l[k]=0 then break fi od;          b(n, subsop(k=2, l))+          `if`(k>1 and l[k-1]=1, b(n, subsop(k=2, k-1=2, l)), 0)+          `if`(k `if`(n>=k, b(n, [0\$k]), b(k, [0\$n])): seq(seq(A(n, d-n), n=0..d), d=0..14); MATHEMATICA b[n_, l_] := b[n, l] = Module[{k, t}, If[Max[l] > n, 0, If[n == 0 || l == {}, 1, If[Min[l] > 0, t = Min[l]; b[n-t, l-t], For[k = 1, True, k++, If[l[[k]] == 0, Break[]]]; b[n, ReplacePart[l, k -> 2]] + If[k > 1 && l[[k-1]] == 1, b[n, ReplacePart[l, {k -> 2, k-1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 1, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]] + b[n, ReplacePart[l, {k -> 1, k+1 -> 2}]] + b[n, ReplacePart[l, {k -> 2, k+1 -> 1}]], 0] + If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2, k+2 -> 2}]] + b[n, ReplacePart[l, {k -> 2, k+1 -> 2, k+2 -> 1}]], 0]]]]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 05 2013, translated from Alois P. Heinz's Maple program *) PROG (Sage) from sage.combinat.tiling import TilingSolver, Polyomino def A(n, k):     p = Polyomino([(0, 0), (0, 1)])     q = Polyomino([(0, 0), (0, 1), (1, 0)])     T = TilingSolver([p, q], box=[n, k], reusable=True, reflection=True)     return T.number_of_solutions() # Ralf Stephan, May 21 2014 CROSSREFS Columns (or rows) k=0-10 give: A000012, A059841, A052980, A165716, A165791, A219988, A219989, A219990, A219991, A219992, A219993. Diagonal gives: A219994. Sequence in context: A134655 A262124 A199954 * A077614 A280379 A180793 Adjacent sequences:  A219984 A219985 A219986 * A219988 A219989 A219990 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Dec 02 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 17:34 EDT 2019. Contains 328319 sequences. (Running on oeis4.)