This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219503 E.g.f.: Sum_{n>=0} (n+1)^(n-1) * sinh(x)^n / n!. 2
 1, 1, 3, 17, 137, 1457, 19355, 308961, 5766353, 123285153, 2972114803, 79782059249, 2360417058521, 76319622510289, 2677629295171979, 101318751122847297, 4113158120834726049, 178328823993199602241, 8223999403291995520995, 401989145900847087408849 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to the LambertW identity: Sum_{n>=0} (n+1)^(n-1)*exp(-n*x)*x^n/n! = exp(x). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 FORMULA E.g.f.: LambertW(-sinh(x)) / (-sinh(x)). a(n) ~ (1+exp(2))^(1/4) * n^(n-1) / (exp(n-1) * log(exp(-1) +sqrt(1+exp(-2)))^(n-1/2)). - Vaclav Kotesovec, Jul 08 2013 EXAMPLE E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 137*x^4/4! + 1457*x^5/5! +... where A(x) = 1 + sinh(x) + 3^1*sinh(x)^2/2! + 4^2*sinh(x)^3/3! + 5^3*sinh(x)^4/4! +... MATHEMATICA CoefficientList[Series[-LambertW[-Sinh[x]]/Sinh[x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *) PROG (PARI) {a(n)=n!*polcoeff(sum(k=0, n, (k+1)^(k-1)*sinh(x + x*O(x^n))^k/k!), n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A238085. Sequence in context: A231909 A286896 A244432 * A230387 A025167 A136727 Adjacent sequences:  A219500 A219501 A219502 * A219504 A219505 A219506 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 18:47 EDT 2019. Contains 325109 sequences. (Running on oeis4.)