OFFSET
1,1
COMMENTS
Table starts
..2..2...3...4....5....6.....7.....8.....9....10....11....12....13....14....15
..2..3...5...7....9...11....13....15....17....19....21....23....25....27....29
..3..5..11..18...26...35....45....56....68....81....95...110...126...143...161
..4..7..18..35...58...88...126...173...230...298...378...471...578...700...838
..5..9..26..58..107..179...281...421...608...852..1164..1556..2041..2633..3347
..6.11..35..88..179..325...550...885..1369..2050..2986..4246..5911..8075.10846
..7.13..45.126..281..550...995..1703..2793..4424..6804.10200.14949.21470.30277
..8.15..56.173..421..885..1703..3083..5328..8869.14306.22458.34423.51649.76017
..9.17..68.230..608.1369..2793..5328..9663.16831.28346.46382.74003
.10.19..81.298..852.2050..4424..8869.16831.30581.53601.91116
.11.21..95.378.1164.2986..6804.14306.28346.53601.97541
.12.23.110.471.1556.4246.10200.22458.46382.91116
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..239
FORMULA
Empirical for column k:
k=1: a(n) = n for n>1
k=2: a(n) = 2*n - 1 for n>1
k=3: a(n) = (1/2)*n^2 + (7/2)*n - 4 for n>1
k=4: a(n) = (1/6)*n^3 + n^2 + (23/6)*n - 7 for n>2
k=5: a(n) = (1/24)*n^4 + (1/4)*n^3 + (35/24)*n^2 + (21/4)*n - 13 for n>2
k=6: a(n) = (1/120)*n^5 + (1/24)*n^4 + (13/24)*n^3 + (59/24)*n^2 + (59/20)*n - 17 for n>3
k=7: a(n) = (1/720)*n^6 + (1/240)*n^5 + (23/144)*n^4 + (13/16)*n^3 + (331/180)*n^2 + (311/60)*n - 27 for n>3
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..0....0..0..0..0....0..0..0..0....1..0..0..0....1..0..0..0
..0..0..0..0....0..0..0..0....1..0..0..0....1..1..0..0....1..0..0..0
..1..0..0..0....1..1..1..0....1..1..1..0....1..1..1..0....1..0..0..0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 20 2012
STATUS
approved