login
A219165
Recurrence equation a(n+1) = a(n)^4 - 4*a(n)^2 + 2 with a(0) = 6.
3
6, 1154, 1773462177794, 9892082352510403757550172975146702122837936996354
OFFSET
0,1
COMMENTS
Bisection of A003423.
FORMULA
Let alpha = 3 + 2*sqrt(2). Then a(n) = (alpha)^(4^n) + (1/alpha)^(4^n).
a(n) = A003423(2*n) = A003499(4^n).
Product {n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)) = sqrt(2).
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2*T(4^n,3), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Let b(n) = a(n) - 6. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Nov 13 2012
STATUS
approved