This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001999 a(n) = a(n-1)*(a(n-1)^2 - 3). (Formerly M3055 N1239) 14
 3, 18, 5778, 192900153618, 7177905237579946589743592924684178 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The next terms in the sequence contain 102 and 305 digits. - Harvey P. Dale, Jun 09 2011 From Peter Bala, Nov 13 2012: (Start) The present sequence is the case x = 3 of the following general remarks. For other cases see A219160 (x = 4), A219161 (x = 5) and A112845 (x = 6). Let x > 2 and let alpha := {x + sqrt(x^2 - 4)}/2. Define a sequence a(n) (which depends on x) by setting a(n) = alpha^(3^n) + (1/alpha)^(3^n). Then it is easy to verify that the sequence a(n) satisfies the recurrence equation a(n+1) = a(n)^3 - 3*a(n) with the initial condition a(0) = x. We have the following identity, valid for x > 2: sqrt((x + 2)/(x - 2)) = (1 + 2/(x-1))*sqrt((y + 2)/(y - 2)), where y = x^3 - 3*x. Iterating the identity produces the product expansion sqrt((x+2)/(x-2)) = product {n = 0..inf} (1 + 2/(a(n) - 1)), with a(0) = x and a(n+1) = a(n)^3 - 3*a(n). The rate of convergence is cubic (Fine). For similar results to the above see A001566 and A219162. (End) REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. C. Greubel, Table of n, a(n) for n = 0..7 A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fib. Quart., 11 (1973), 429-437. E. B. Escott, Rapid method for extracting a square root, Amer. Math. Monthly, 44 (1937), 644-646. N. J. Fine, Infinite products for k-th roots, Amer. Math. Monthly Vol. 84, No. 8, Oct. 1977. Eric Weisstein's World of Mathematics, Pierce Expansion FORMULA a(n) = 2*F(2*3^n+1) - F(2*3^n) = ceiling(tau^(2*3^n)) where F(k) = A000045(k) is the k-th Fibonacci number and tau is the golden ratio. - Benoit Cloitre, Nov 29 2002 From Peter Bala, Nov 13 2012: (Start) a(n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n). Product_{n >= 0} (1 + 2/(a(n) - 1)) = sqrt(5). a(n) = A002814(n+1) + 1. (End) a(n) = 2*T(3^n,3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A219161. - Peter Bala, Feb 01 2017 MATHEMATICA NestList[#(#^2-3)&, 3, 6] (* Harvey P. Dale, Jun 09 2011 *) RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a == 3}, a, {n,   0, 5}] (* G. C. Greubel, Dec 30 2016 *) PROG (PARI) a(n)=2*fibonacci(2*3^n+1)-fibonacci(2*3^n) CROSSREFS Cf. A006276. A001566, A002814, A112845, A219160, A219161, A219162. Sequence in context: A214442 A057133 A321249 * A157580 A101293 A227882 Adjacent sequences:  A001996 A001997 A001998 * A002000 A002001 A002002 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 23 01:06 EDT 2019. Contains 326211 sequences. (Running on oeis4.)