login
A218689
Sum_{k=0..n} C(n,k)^6*C(n+k,k)^6.
10
1, 65, 93313, 795985985, 8178690000001, 93706344780048065, 1453730786373283012225, 26552497154713885161031745, 513912636558068387176582890625, 10769375530849394271690330588432065, 243282405272735566295972089793676717313, 5763401688773271719278313934033057270226625
OFFSET
0,2
FORMULA
a(n) ~ (1+sqrt(2))^(6*(2n+1))/(2^(17/4)*(Pi*n)^(11/2)*sqrt(3))
Generally, Sum_{k=0..n} C(n,k)^p*C(n+k,k)^p is asymptotic to (1+sqrt(2))^(p*(2*n+1))/(2^(p/2+3/4)*(Pi*n)^(p-1/2)*sqrt(p)) * (1-(2*p-1)/(4*n)+(4*p^2+24*p-19)*sqrt(2)/(96*p*n))
MATHEMATICA
Table[Sum[Binomial[n, k]^6*Binomial[n+k, k]^6, {k, 0, n}], {n, 0, 20}]
CROSSREFS
Cf. A001850 (p=1), A005259 (p=2), A092813 (p=3), A092814 (p=4), A092815 (p=5).
Sequence in context: A242283 A061688 A337808 * A171706 A015072 A015039
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 04 2012
STATUS
approved