login
A061688
Generalized Bell numbers.
3
1, 1, 65, 48844, 209175233, 3464129078126, 173566857025139312, 22208366234650578141209, 6409515697874502425444186817, 3794729706423816704068204814925754, 4276126299841623727960390049367617509190, 8631647765438316626054238101611711249984175399
OFFSET
0,3
LINKS
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^7 = exp(Sum_{n>=1} x^n / (n!)^7). - Ilya Gutkovskiy, Jul 17 2020
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n, k)^7*(n-k)*a(k)/n, k=0..n-1))
end:
seq(a(n), n=0..12); # Alois P. Heinz, Nov 07 2008
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[Binomial[n, k]^7*(n-k)*a[k]/n, {k, 0, n-1}]]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 17 2014, after Alois P. Heinz *)
CROSSREFS
Column k=7 of A275043.
Sequence in context: A291456 A269794 A242283 * A337808 A218689 A171706
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 18 2001
EXTENSIONS
More terms from Alois P. Heinz, Nov 07 2008
STATUS
approved