login
A218346
Numbers of the form a^a + b^b, with a > b > 0.
3
5, 28, 31, 257, 260, 283, 3126, 3129, 3152, 3381, 46657, 46660, 46683, 46912, 49781, 823544, 823547, 823570, 823799, 826668, 870199, 16777217, 16777220, 16777243, 16777472, 16780341, 16823872, 17600759, 387420490, 387420493, 387420516, 387420745, 387423614, 387467145
OFFSET
1,1
COMMENTS
Subsequence of A066846.
LINKS
EXAMPLE
a(1) = 2^2 + 1^1 = 5,
a(2) = 3^3 + 1^1 = 28,
a(3) = 2^2 + 3^3 = 31.
MAPLE
N:= 10^12: # for terms <= N
S:= NULL:
for m from 1 do v:= m^m; if v > N then break fi; S:= S, v od:
sort(convert(select(`<=`, {seq(seq(S[i]+S[j], j=i+1..m-1), i=1..m-1)}, N), list)); # Robert Israel, Aug 10 2020
MATHEMATICA
nn = 10; Select[Union[Flatten[Table[a^a + b^b, {a, nn}, {b, a + 1, nn}]]], # <= nn^nn + 1 &] (* T. D. Noe, Nov 15 2012 *)
PROG
(Python)
from itertools import count, takewhile
def aupto(lim):
pows = list(takewhile(lambda x: x < lim, (i**i for i in count(1))))
sums = (aa+bb for i, bb in enumerate(pows) for aa in pows[i+1:])
return sorted(set(s for s in sums if s <= lim))
print(aupto(387467145)) # Michael S. Branicky, May 28 2021
CROSSREFS
Cf. A068145: primes of the form a^a + b^b.
Sequence in context: A351774 A344579 A345263 * A106679 A341061 A161165
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Oct 26 2012
STATUS
approved