login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218234 Infinitesimal generator for padded Pascal matrix A097805 (as lower triangular matrices). 3
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Matrix T begins

0;

0,0;

0,1,0;

0,0,2,0;

0,0,0,3,0;

0,0,0,0,4,0;

Let M(t) = exp(t*T) = limit [1 + t*T/n]^n as n tends to infinity.

Then M(1) = the lower triangular padded Pascal matrix A097805, with inverse M(-1).

Given a polynomial sequence p_n(x) with p_0(x)=1 and the lowering and raising operators L and R defined by L P_n(x) = n * P_(n-1)(x) and R P_n(x) = P_(n+1)(x), the matrix T represents the action of R^2*L in the p_n(x) basis. For p_n(x) = x^n, L = D = d/dx and R = x. For p_n(x) = x^n/n!, L = DxD and R = D^(-1).

See A132440 for an analog and more general discussion.

LINKS

Table of n, a(n) for n=0..79.

P. Blasiak and P. Flajolet, Combinatorial models of creation-annihilation

T. Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras

T. Copeland, Mathemagical Forests

T. Copeland, Addendum to Mathemagical Forests

G. Dattoli, B. Germano, M. Martinelli, and P. Ricci, Touchard like polynomials and generalized Stirling polynomials

W. Lang, Combinatorial interpretation of generalized Stirling numbers

FORMULA

The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.s A(x) and B(x), or e.g.f.s EA(x) and EB(x):

  1) b(0) = 0, b(1) = 0, b(n) = (n-1) * a(n-1),

  2) B(x) = x^2D A(x)= x (xDx)(1/x)A(x) = x^2 * Lag(1,-:xD:) A(x)/x , or

  3) EB(x) = D^(-1)xD  EA(x),

  where D is the derivative w.r.t. x, (D^(-1)x^j/j!) = x^(j+1)/(j+1)!, (:xD:)^j = x^j*D^j, and Lag(n,x) are the Laguerre polynomials A021009.

So the exponentiated operator can be characterized as

  4) exp(t*T) A(x) = exp(t*x^2D) A(x) = x exp(t*xDx)(1/x)A(x)

     = x [sum(n=0,1,...) (t*x)^n * Lag(n,-:xD:)] A(x)/x

     = x [exp{[t*u/(1-t*u)]*:xD:} / (1-t*u) ] A(x)/x (eval. at u=x)

     = A[x/(1-t*x)], a special Moebius or linear fractional trf.,

  5) exp(t*T) EA(x) =  D^(-1) exp(t*x)D EA(x), a shifted Euler trf.

     for an e.g.f., or

  6) [exp(t*T) * a]_n = [M(t) * a]_n

     = [sum(k=0,...,n-1) binomial(n-1,k)*  t^(n-1-k) * a(k+1)] with [M(t) * a]_0 = a_0

For generalizations and more on the operator x^2D, see A132440 and the references therein and above, and A094638.

MATHEMATICA

Table[PadLeft[{n-1, 0}, n+1], {n, 0, 12}]  // Flatten (* Jean-Fran├žois Alcover, Apr 30 2014 *)

CROSSREFS

Sequence in context: A112167 A230571 A037213 * A092197 A213618 A319072

Adjacent sequences:  A218231 A218232 A218233 * A218235 A218236 A218237

KEYWORD

easy,tabl,nonn

AUTHOR

Tom Copeland, Oct 24 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 05:17 EDT 2018. Contains 316304 sequences. (Running on oeis4.)