This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218234 Infinitesimal generator for padded Pascal matrix A097805 (as lower triangular matrices). 3
 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Matrix T begins 0; 0,0; 0,1,0; 0,0,2,0; 0,0,0,3,0; 0,0,0,0,4,0; Let M(t) = exp(t*T) = limit [1 + t*T/n]^n as n tends to infinity. Then M(1) = the lower triangular padded Pascal matrix A097805, with inverse M(-1). Given a polynomial sequence p_n(x) with p_0(x)=1 and the lowering and raising operators L and R defined by L P_n(x) = n * P_(n-1)(x) and R P_n(x) = P_(n+1)(x), the matrix T represents the action of R^2*L in the p_n(x) basis. For p_n(x) = x^n, L = D = d/dx and R = x. For p_n(x) = x^n/n!, L = DxD and R = D^(-1). See A132440 for an analog and more general discussion. LINKS P. Blasiak and P. Flajolet, Combinatorial models of creation-annihilation T. Copeland, Mathemagical Forests T. Copeland, Addendum to Mathemagical Forests G. Dattoli, B. Germano, M. Martinelli, and P. Ricci, Touchard like polynomials and generalized Stirling polynomials FORMULA The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.s A(x) and B(x), or e.g.f.s EA(x) and EB(x):   1) b(0) = 0, b(1) = 0, b(n) = (n-1) * a(n-1),   2) B(x) = x^2D A(x)= x (xDx)(1/x)A(x) = x^2 * Lag(1,-:xD:) A(x)/x , or   3) EB(x) = D^(-1)xD  EA(x),   where D is the derivative w.r.t. x, (D^(-1)x^j/j!) = x^(j+1)/(j+1)!, (:xD:)^j = x^j*D^j, and Lag(n,x) are the Laguerre polynomials A021009. So the exponentiated operator can be characterized as   4) exp(t*T) A(x) = exp(t*x^2D) A(x) = x exp(t*xDx)(1/x)A(x)      = x [sum(n=0,1,...) (t*x)^n * Lag(n,-:xD:)] A(x)/x      = x [exp{[t*u/(1-t*u)]*:xD:} / (1-t*u) ] A(x)/x (eval. at u=x)      = A[x/(1-t*x)], a special Moebius or linear fractional trf.,   5) exp(t*T) EA(x) =  D^(-1) exp(t*x)D EA(x), a shifted Euler trf.      for an e.g.f., or   6) [exp(t*T) * a]_n = [M(t) * a]_n      = [sum(k=0,...,n-1) binomial(n-1,k)*  t^(n-1-k) * a(k+1)] with [M(t) * a]_0 = a_0 For generalizations and more on the operator x^2D, see A132440 and the references therein and above, and A094638. MATHEMATICA Table[PadLeft[{n-1, 0}, n+1], {n, 0, 12}]  // Flatten (* Jean-François Alcover, Apr 30 2014 *) CROSSREFS Sequence in context: A112167 A230571 A037213 * A092197 A213618 A319072 Adjacent sequences:  A218231 A218232 A218233 * A218235 A218236 A218237 KEYWORD easy,tabl,nonn AUTHOR Tom Copeland, Oct 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 11:48 EDT 2019. Contains 328345 sequences. (Running on oeis4.)