%I #23 Aug 02 2014 06:14:09
%S 2,-2,0,2,-2,2,-2,2,-2,0,0,0,2,-2,4,-2,-2,0,2,-2,0,0,0,0,0,2,-2,6,-6,
%T 2,-2,0,0,2,-2,0,6,-6,0,0,0,0,2,-2,10,-10,0,2,-2,0,0,0,2,-2,0,0,0,0,0,
%U 0,0,0,0,2,-2,20,-10,-4,-6,2,-2,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,2,-2
%N Triangle read by rows: T(n,k) = 2*C(n-1,k)-C(n,k) for k<n, T(n,n)=-2, where C(n,k) = A216955(n,k).
%H B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102, Dec 25 2012.
%H B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
%H N. J. A. Sloane, <a href="/A217943/a217943.txt">Rows 2 through 48 of A217943</a>
%H <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a>
%e Triangle begins:
%e [2, -2]
%e [0, 2, -2]
%e [2, -2, 2, -2]
%e [0, 0, 0, 2, -2]
%e [4, -2, -2, 0, 2, -2]
%e [0, 0, 0, 0, 0, 2, -2]
%e [6, -6, 2, -2, 0, 0, 2, -2]
%e [0, 6, -6, 0, 0, 0, 0, 2, -2]
%e [10, -10, 0, 2, -2, 0, 0, 0, 2, -2]
%e [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2]
%e [20, -10, -4, -6, 2, -2, 0, 0, 0, 0, 2, -2]
%e ...
%Y Cf. A216955.
%Y The nonzero entries in the first column form A216958.
%K sign,tabf
%O 2,1
%A _N. J. A. Sloane_, following a suggestion from _Allan Wilks_, Oct 25 2012