login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217943 Triangle read by rows: T(n,k) = 2*C(n-1,k)-C(n,k) for k<n, T(n,n)=-2, where C(n,k) = A216955(n,k). 2
2, -2, 0, 2, -2, 2, -2, 2, -2, 0, 0, 0, 2, -2, 4, -2, -2, 0, 2, -2, 0, 0, 0, 0, 0, 2, -2, 6, -6, 2, -2, 0, 0, 2, -2, 0, 6, -6, 0, 0, 0, 0, 2, -2, 10, -10, 0, 2, -2, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 20, -10, -4, -6, 2, -2, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Table of n, a(n) for n=2..91.

B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102, Dec 25 2012.

B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.

N. J. A. Sloane, Rows 2 through 48 of A217943

Index entries for sequences related to curling numbers

EXAMPLE

Triangle begins:

[2, -2]

[0, 2, -2]

[2, -2, 2, -2]

[0, 0, 0, 2, -2]

[4, -2, -2, 0, 2, -2]

[0, 0, 0, 0, 0, 2, -2]

[6, -6, 2, -2, 0, 0, 2, -2]

[0, 6, -6, 0, 0, 0, 0, 2, -2]

[10, -10, 0, 2, -2, 0, 0, 0, 2, -2]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2]

[20, -10, -4, -6, 2, -2, 0, 0, 0, 0, 2, -2]

...

CROSSREFS

Cf. A216955.

The nonzero entries in the first column form A216958.

Sequence in context: A029310 A134131 A127527 * A177225 A236306 A153239

Adjacent sequences:  A217940 A217941 A217942 * A217944 A217945 A217946

KEYWORD

sign,tabf

AUTHOR

N. J. A. Sloane, following a suggestion from Allan Wilks, Oct 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 19 01:29 EDT 2017. Contains 290787 sequences.