login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217325
Number of self-inverse permutations in S_n with longest increasing subsequence of length 5.
2
1, 5, 29, 127, 583, 2446, 10484, 43363, 181546, 748840, 3114308, 12878441, 53594473, 222761422, 930856456, 3893811380, 16365678160, 68937445765, 291656714515, 1237403762663, 5271285939671, 22524961082326, 96620152734652, 415768621923904, 1795530067804295
OFFSET
5,2
COMMENTS
Also the number of Young tableaux with n cells and 5 rows.
LINKS
FORMULA
a(n) = A182172(n,5)-A182172(n,4) = A049401(n)-A005817(n).
EXAMPLE
a(5) = 1: 12345.
a(6) = 5: 123465, 123546, 124356, 132456, 213456.
MAPLE
a:= proc(n) option remember; `if`(n<5, 0, `if`(n=5, 1,
((n+3)*(166075637*n^5+3319452867*n^4+10706068615*n^3-39910302747*n^2
-182846631872*n-159926209260)*a(n-1) +(840221898216*n+133982123900
-322021480097*n^3-83890810854*n^4+12016871251*n^5+3735622433*n^6
+111397917411*n^2)*a(n-2)-(n-2)*(2142183361*n^5+66617759078*n^4
-47640468971*n^3-611402096064*n^2+15449945364*n+452645243780)*a(n-3)
-(n-2)*(n-3)*(33769818805*n^4-54918997862*n^3 -469629276839*n^2
+789889969148*n +94438295920)*a(-4+n) -4*(n-2)*(n-3)*(-4+n)*
(2060107324*n^3 -87569131518*n^2+293565842963*n -151080184425)*a(n-5)
+240*(n-2)*(n-3)*(n-5)*(168175627*n-312397451)*(-4+n)^2*a(n-6))/
(8*(13927136*n+37088781)*(n-5)*(n+6)*(n+4)*(n+3)^2)))
end:
seq (a(n), n=5..40);
CROSSREFS
Column k=5 of A047884.
Sequence in context: A267921 A241676 A291889 * A034332 A273027 A268957
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 30 2012
STATUS
approved