OFFSET
1,3
COMMENTS
See Ma (2012) for precise definition (cf. Proposition 6).
LINKS
S.-M. Ma, Enumeration of permutations by number of cyclic peaks and cyclic valleys, arXiv preprint arXiv:1203.6264 [math.CO], 2012.
EXAMPLE
Triangle begins:
0;
1;
2;
7, 2;
28, 16;
131, 118, 16;
690, 892, 272;
...
MATHEMATICA
V[0][_, _] = 1; V[1][_, _] = 0; V[2][_, x_] := x; V[3][_, x_] := 2x;
V[n_][q_, x_] := V[n][q, x] = (n-1) q V[n-1][q, x] + 2q(1-q) D[V[n-1][q, x], q] + 2x (1-q) D[V[n-1][q, x], x] + (n-1) x V[n-2][q, x] // Simplify;
Table[If[n==1, {0}, CoefficientList[V[n][q, x] /. x -> 1, q]], {n, 1, 13}] // Flatten (* Jean-François Alcover, Sep 23 2018 *)
PROG
(PARI) tabf(m) = {P = x; M = subst(P, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); Q = 2*x; M = subst(Q, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); for (n=3, m, newP = n*q*Q + 2*q*(1-q)*deriv(Q, q) + 2*x*(1-q)*deriv(Q, x) + n*x*P; M = subst(newP, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = Q; Q = newP; ); } \\ Michel Marcus, Feb 09 2013
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 27 2012
EXTENSIONS
More terms from Michel Marcus, Feb 09 2013
STATUS
approved