login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217202
Triangle read by rows, arising in enumeration of permutations by cyclic valleys, cycles and fixed points.
1
0, 1, 2, 7, 2, 28, 16, 131, 118, 16, 690, 892, 272, 4033, 7060, 3468, 272, 25864, 58608, 41088, 7936, 180265, 510812, 479772, 156176, 7936, 1354458, 4675912, 5635224, 2665184, 353792, 10898823, 44918110, 67238764, 42832648, 9972704, 353792, 93407828, 452104928
OFFSET
1,3
COMMENTS
See Ma (2012) for precise definition (cf. Proposition 6).
LINKS
EXAMPLE
Triangle begins:
0;
1;
2;
7, 2;
28, 16;
131, 118, 16;
690, 892, 272;
...
MATHEMATICA
V[0][_, _] = 1; V[1][_, _] = 0; V[2][_, x_] := x; V[3][_, x_] := 2x;
V[n_][q_, x_] := V[n][q, x] = (n-1) q V[n-1][q, x] + 2q(1-q) D[V[n-1][q, x], q] + 2x (1-q) D[V[n-1][q, x], x] + (n-1) x V[n-2][q, x] // Simplify;
Table[If[n==1, {0}, CoefficientList[V[n][q, x] /. x -> 1, q]], {n, 1, 13}] // Flatten (* Jean-François Alcover, Sep 23 2018 *)
PROG
(PARI) tabf(m) = {P = x; M = subst(P, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); Q = 2*x; M = subst(Q, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); for (n=3, m, newP = n*q*Q + 2*q*(1-q)*deriv(Q, q) + 2*x*(1-q)*deriv(Q, x) + n*x*P; M = subst(newP, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = Q; Q = newP; ); } \\ Michel Marcus, Feb 09 2013
CROSSREFS
First column is A217203.
Sequence in context: A281897 A282106 A282260 * A100489 A176379 A282454
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 27 2012
EXTENSIONS
More terms from Michel Marcus, Feb 09 2013
STATUS
approved