login
A282454
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 475", based on the 5-celled von Neumann neighborhood.
4
1, 2, 7, 2, 31, 2, 127, 2, 511, 2, 2047, 2, 8191, 2, 32767, 2, 131071, 2, 524287, 2, 2097151, 2, 8388607, 2, 33554431, 2, 134217727, 2, 536870911, 2, 2147483647, 2, 8589934591, 2, 34359738367, 2, 137438953471, 2, 549755813887, 2, 2199023255551, 2
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = 5*a(n-2) - 4*a(n-4) for n > 3.
G.f.: (-8*x^3 + 2*x^2 + 2*x + 1)/(4*x^4 - 5*x^2 + 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 475; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i , 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Feb 15 2017
STATUS
approved